[53] B. Shi et al., “Challenges in DNA delivery and recent advances in multifunctional
polymeric DNA delivery systems,” Biomacromolecules, vol. 18, no. 8, pp. 2231–2246,
Aug. 2017, doi: 10.1021/acs.biomac.7b00803
[54] O. Boussif et al., “A versatile vector for gene and oligonucleotide transfer into cells
in culture and in vivo: Polyethylenimine,” Proc. Natl. Acad. Sci., vol. 92, no. 16,
pp. 7297–7301, Aug. 1995, doi: 10.1073/pnas.92.16.7297
[55] Y. Yue and C. Wu, “Progress and perspectives in developing polymeric vectors for
in vitro gene delivery,” Biomater. Sci., vol. 1, no. 2, pp. 152–170, 2013, doi: 10.103
9/c2bm00030j
[56] M. E. Hwang, R. K. Keswani, and D. W. Pack, “Dependence of PEI and PAMAM
gene delivery on Clathrin- and Caveolin-dependent trafficking pathways,” Pharm.
Res., vol. 32, no. 6, pp. 2051–2059, Jun. 2015, doi: 10.1007/s11095-014-1598-6
[57] A. S. Tait et al., “Transient production of recombinant proteins by Chinese hamster
ovary cells using polyethyleneimine/DNA complexes in combination with micro-
tubule disrupting anti-mitotic agents,” Biotechnol. Bioeng., vol. 88, pp. 707–721,
2004, doi: 10.1002/bit.20265
[58] S. Grosse, G. Thévenot, M. Monsigny, and I. Fajac, “Which mechanism for nuclear
import of plasmid DNA complexed with polyethylenimine derivatives?” J. Gene.
Med., vol. 8, no. 7, pp. 845–851, Jul. 2006, doi: 10.1002/jgm.915
[59] X. Han et al., “The heterogeneous nature of polyethylenimine-DNA complex for-
mation affects transient gene expression,” Cytotechnology, vol. 60, pp. 63–75, Aug.
2009, doi: 10.1007/s10616-009-9215-y
[60] M. Gillard et al., “Intracellular trafficking pathways for nuclear delivery of plasmid
DNA complexed with highly efficient endosome escape polymers,” Biomacromolecules,
vol. 15, no. 10, pp. 3569–3576, 2014, doi: 10.1021/bm5008376
[61] E. V. B. van Gaal et al., “How to screen non-viral gene delivery systems in vitro?”
J. Control. Release, vol. 154, no. 3, pp. 218–232, Sep. 2011, doi: 10.1016/
j.jconrel.2011.05.001
[62] Y. Fukumoto et al., “Cost-effective gene transfection by DNA compaction at pH
4.0 using acidified, long shelf-life polyethylenimine,” Cytotechnology, vol. 62, no.
1, pp. 73–82, Jan. 2010, doi: 10.1007/s10616-010-9259-z
[63] Y. Sang et al., “Salt ions and related parameters affect PEI-DNA particle size and
transfection efficiency in Chinese hamster ovary cells,” Cytotechnology, vol. 67,
no. 1, pp. 67–74, Jan. 2015, doi: 10.1007/s10616-013-9658-z
[64] A. Raup et al., “Compaction and transmembrane delivery of pDNA: Differences
between l-PEI and two types of amphiphilic block Copolymers,” Biomacromolecules,
vol. 18, no. 3, pp. 808–818, Mar. 2017, doi: 10.1021/acs.biomac.6b01678
[65] A. K. Blakney, G. Yilmaz, P. F. McKay, C. R. Becer, and R. J. Shattock, “One size
does not fit all: The effect of chain length and charge density of poly(ethylene
imine) based copolymers on delivery of pDNA, mRNA, and RepRNA polyplexes,”
Biomacromolecules, vol. 19, no. 7, pp. 2870–2879, Jul. 2018, doi: 10.1021/
acs.biomac.8b00429
[66] A. V. Ulasov, Y. V. Khramtsov, G. A. Trusov, A. A. Rosenkranz, E. D. Sverdlov,
and A. S. Sobolev, “Properties of PEI-based polyplex nanoparticles that correlate
with their transfection efficacy,” Mol. Ther., vol. 19, no. 1, pp. 103–112, Jan. 2011,
doi: 10.1038/mt.2010.233
[67] J. Fuenmayor, L. Cervera, S. Gutierrez-Granados, and F. Godia, “Transient gene
expression optimization and expression vector comparison to improve HIV-1 VLP
production in HEK293 cell lines,” Appl. Microbiol. Biotechnol., vol. 102, no. 1,
pp. 165–174, 2018, doi: 10.1007/s00253-017-8605-x
Recombinant vaccines: Gag-based VLPs
263