[53] B. Shi et al., “Challenges in DNA delivery and recent advances in multifunctional

polymeric DNA delivery systems,” Biomacromolecules, vol. 18, no. 8, pp. 2231–2246,

Aug. 2017, doi: 10.1021/acs.biomac.7b00803

[54] O. Boussif et al., “A versatile vector for gene and oligonucleotide transfer into cells

in culture and in vivo: Polyethylenimine,” Proc. Natl. Acad. Sci., vol. 92, no. 16,

pp. 7297–7301, Aug. 1995, doi: 10.1073/pnas.92.16.7297

[55] Y. Yue and C. Wu, “Progress and perspectives in developing polymeric vectors for

in vitro gene delivery,” Biomater. Sci., vol. 1, no. 2, pp. 152–170, 2013, doi: 10.103

9/c2bm00030j

[56] M. E. Hwang, R. K. Keswani, and D. W. Pack, “Dependence of PEI and PAMAM

gene delivery on Clathrin- and Caveolin-dependent trafficking pathways,” Pharm.

Res., vol. 32, no. 6, pp. 2051–2059, Jun. 2015, doi: 10.1007/s11095-014-1598-6

[57] A. S. Tait et al., “Transient production of recombinant proteins by Chinese hamster

ovary cells using polyethyleneimine/DNA complexes in combination with micro-

tubule disrupting anti-mitotic agents,” Biotechnol. Bioeng., vol. 88, pp. 707–721,

2004, doi: 10.1002/bit.20265

[58] S. Grosse, G. Thévenot, M. Monsigny, and I. Fajac, “Which mechanism for nuclear

import of plasmid DNA complexed with polyethylenimine derivatives?” J. Gene.

Med., vol. 8, no. 7, pp. 845–851, Jul. 2006, doi: 10.1002/jgm.915

[59] X. Han et al., “The heterogeneous nature of polyethylenimine-DNA complex for-

mation affects transient gene expression,” Cytotechnology, vol. 60, pp. 63–75, Aug.

2009, doi: 10.1007/s10616-009-9215-y

[60] M. Gillard et al., “Intracellular trafficking pathways for nuclear delivery of plasmid

DNA complexed with highly efficient endosome escape polymers,” Biomacromolecules,

vol. 15, no. 10, pp. 3569–3576, 2014, doi: 10.1021/bm5008376

[61] E. V. B. van Gaal et al., “How to screen non-viral gene delivery systems in vitro?”

J. Control. Release, vol. 154, no. 3, pp. 218–232, Sep. 2011, doi: 10.1016/

j.jconrel.2011.05.001

[62] Y. Fukumoto et al., “Cost-effective gene transfection by DNA compaction at pH

4.0 using acidified, long shelf-life polyethylenimine,” Cytotechnology, vol. 62, no.

1, pp. 73–82, Jan. 2010, doi: 10.1007/s10616-010-9259-z

[63] Y. Sang et al., “Salt ions and related parameters affect PEI-DNA particle size and

transfection efficiency in Chinese hamster ovary cells,” Cytotechnology, vol. 67,

no. 1, pp. 67–74, Jan. 2015, doi: 10.1007/s10616-013-9658-z

[64] A. Raup et al., “Compaction and transmembrane delivery of pDNA: Differences

between l-PEI and two types of amphiphilic block Copolymers,” Biomacromolecules,

vol. 18, no. 3, pp. 808–818, Mar. 2017, doi: 10.1021/acs.biomac.6b01678

[65] A. K. Blakney, G. Yilmaz, P. F. McKay, C. R. Becer, and R. J. Shattock, “One size

does not fit all: The effect of chain length and charge density of poly(ethylene

imine) based copolymers on delivery of pDNA, mRNA, and RepRNA polyplexes,”

Biomacromolecules, vol. 19, no. 7, pp. 2870–2879, Jul. 2018, doi: 10.1021/

acs.biomac.8b00429

[66] A. V. Ulasov, Y. V. Khramtsov, G. A. Trusov, A. A. Rosenkranz, E. D. Sverdlov,

and A. S. Sobolev, “Properties of PEI-based polyplex nanoparticles that correlate

with their transfection efficacy,” Mol. Ther., vol. 19, no. 1, pp. 103–112, Jan. 2011,

doi: 10.1038/mt.2010.233

[67] J. Fuenmayor, L. Cervera, S. Gutierrez-Granados, and F. Godia, “Transient gene

expression optimization and expression vector comparison to improve HIV-1 VLP

production in HEK293 cell lines,” Appl. Microbiol. Biotechnol., vol. 102, no. 1,

pp. 165–174, 2018, doi: 10.1007/s00253-017-8605-x

Recombinant vaccines: Gag-based VLPs

263